**Mathematical Analysis II**

by Elias Zakon

**Publisher**: The TrilliaGroup 2009**ISBN/ASIN**: 1931705038**Number of pages**: 436

**Description**:

This final text in the Zakon Series on Mathematics Analysis follows the release of the author's Basic Concepts of Mathematics and Mathematical Analysis I and completes the material on Real Analysis that is the foundation for later courses in functional analysis, harmonic analysis, probability theory, etc. This text is appropriate for any second course in real analysis or mathematical analysis, whether at the undergraduate or graduate level.

Download or read it online for free here:

**Download link**

(2.5MB, PDF)

## Similar books

**An Introductory Course Of Mathematical Analysis**

by

**Charles Walmsley**-

**Cambridge University Press**

Originally published in 1926, this text was aimed at first-year undergraduates studying physics and chemistry, to help them become acquainted with the concepts and processes of differentiation and integration. A prominence is given to inequalities.

(

**4473**views)

**A Primer of Real Analysis**

by

**Dan Sloughter**-

**Synechism.org**

This is a short introduction to the fundamentals of real analysis. Although the prerequisites are few, the author is assuming that the reader has the level of mathematical maturity of one who has completed the standard sequence of calculus courses.

(

**4302**views)

**Real Analysis for Graduate Students: Measure and Integration Theory**

by

**Richard F. Bass**-

**CreateSpace**

Nearly every Ph.D. student in mathematics needs to take a preliminary or qualifying examination in real analysis. This book provides the necessary tools to pass such an examination. The author presents the material in as clear a fashion as possible.

(

**11100**views)

**Fundamentals of Analysis**

by

**W W L Chen**-

**Macquarie University**

Set of notes suitable for an introduction to the basic ideas in analysis: the number system, sequences and limits, series, functions and continuity, differentiation, the Riemann integral, further treatment of limits, and uniform convergence.

(

**14987**views)